TECHNICAL DATA U SÉRIES

ARNETT TENGINEERED SOLUTIONS

ARNETT ENGINEERED SOLUTIONS61 INNOVATION DRIVE, BAMBERG, SC 29003

(844) 785-7585 | SALES@ARNETT.COM

UNIDIRECTIONAL KNIFE GATE VALVE - WAFER DESIGN

DESCRIPTION

- Unidirectional wafer knife gate valve with wafer design.
- One-piece cast body with guides to support gate and seat wedges.
- Provides high flow rates with low pressure drop.
- Various seat and packing materials available.
- Face-to-face dimension in accordance with CMO Valves standard
- It has an arrow on the body indicating the flow direction

GENERAL APPLICATIONS

This knife gate valve is suitable for liquids that contain a maximum of 5% suspended solids. If it is used for dry solids in gravity feed applications it should be installed with the arrow on the body pointing in the opposite direction to the flow.

Designed for applications such as:

- Paper Industry
- Sewage treatment.
- Mining
- Pumping
- Silo emptying
- Food Industry

SIZES

DN50 to DN800

WORKING PRESSURE ($\triangle P$)

DN50 - DN250	10 bar
DN300 - DN400	6 bar
DN450	5 bar
DN500 - DN600	4 bar
DN700 - DN800	3 bar
* Other pressures, consult.	

STANDARD FLANGES

- PN10
- ANSI B16.5 (clase 150)

U SERIES

OTHER COMMON FLANGES

- PN6
- PN16.
- PN25.
- Australian standard.
- JIS standard.
- British standard.

Fig. 1

APPLICATION OF EUROPEAN DIRECTIVES

See document of European Directives applicable to **CMO Valves.**

QUALITY DOSSIER

All valves are tested hydrostatically at CMO Valves and material and test certificates can be provided.

- Body test = working pressure x 1.5
- Seat test = working pressure x 1.1

As part of a process of on-going product and service development, **CMO Valves** reserves the right to amend and change the data and content of this document at its discretion at any time without notice. The publication of the latest revision renders all previous documents invalid.

Installation and Maintenance Manual available at www.cmovalves.com.

^{*} Others **ND** on request.

^{*} For category and zone information, contact technical-commercial department at **CMO Valves.**

ADVANTAGES

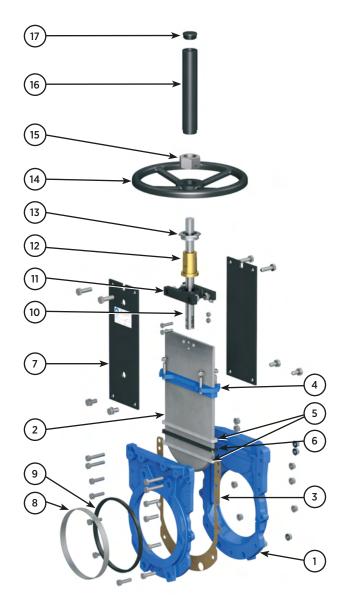
This knife gate valve's main characteristic is that it provides a full continuous flow. This means it does not produce cavities in open position, so there are no turbulences in the fluid. It is also called a bidirectional guillotine or knife valve. The valve's body is made up of two parts or halves. The internal surface of both parts is fully machined and they are joined with bolts to form a solid block.

The knife gate in the stainless steel version slides smoothly inside the body thanks to the sliders inserted inside both parts of the body.

The stem protection cap is independent from the handwheel's fastening nut, meaning the bonnet can be disassembled without the need to release the handwheel. This allows regular maintenance operations to be carried out, such as lubricating the stem, etc.

The stem in **CMO Valves** is made from stainless steel AISI304. This is an additional benefit, since some manufacturers supply it with 13% chrome, which rusts quickly.

The operating handwheel is made from ductile cast iron. Some manufacturers supply it in common cast-iron, which can lead to breakage in the event of very high operation torque or a bang.


The yoke has a compact design with the bronze actuator nut protected in a sealed, lubricated box. This makes it possible to move the valve with a key, even without the handwheel (this is not possible in other manufacturers' products).

The pneumatic actuator's top and bottom bonnets are made of ductile cast iron, making them highly shock-resistant. This characteristic is essential in pneumatic actuators.

The pneumatic cylinder's sealing joints are commercial products and can be purchased worldwide. This means it is not necessary to contact **CMO Valves** every time a sealing joint is required.

STANDARD COMPONENTS LIST

CC	MPONENT	NODULAR IRON	ST.STEEL					
1	BODY	GJS500-7	CF8M					
2	GATE	AISI304	AISI316					
3	SEAL	CARTON						
4	PACKING GLAND	GJS500-7 CF8M						
5	PACKING	SYNT. + PTFE						
6	PACKING SEAL	EPDM						
7	SUPPORT PLATES	S275JR						
8	RING	AISI316						
9	O-RING SEAL	EPDM	1					
10	STEM	AISI30)3					
11	YOKE	GJS500)-7					
12	STEM NUT	BRONZ	ZE					
13	CHECK NUT	ACER	0					
14	HANDWHEEL	GJS500)-7					
15	NUT	5.6 ZIN	IC					
16	HOOD	STEEI	L					
17	TOP CAP	PLAST	IC					

DESIGN CHARACTERISTICS

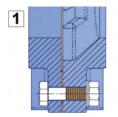
1. BODY

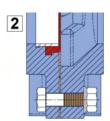
Wafer-design reinforced cast body, comprising two bolted parts. The stainless steel version has interior sliders for smooth movement of the knife gate, while the GJS500-7 versions do not require sliders.

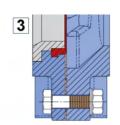
The internal surface of both parts is fully machined and they are joined with bolts to form a solid block.

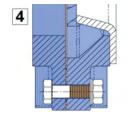
Designed for total flow, with the shape of the inside of the body preventing any buildup of solids in the gate area; this means there is no cavitation in open position and therefore no turbulence in the fluid, while loss of load is minimum, thus providing large flows.

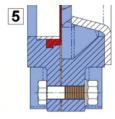
The standard manufacturing materials are CF8M stainless steel and GJS500-7 ductile cast iron. Other materials such as A216WCB carbon steel and stainless steel alloys (AISI316Ti, Duplex, 254SMO, Uranus B6, etc) are available to order. As standard, carbon steel or ductile cast iron valves are painted with EPOXY anti-corrosive protection (RAL 5015). Other types of anti-corrosive protections are available on request.


2. GATE


The standard manufacturing materials are AISI304 stainless steel in valves with iron body and AISI316 stainless steel in valves with CF8M body. In both cases, when the high pressures to be supported require it, we also use DUPLEX material. Other materials or combinations can be supplied on request.


The gate is polished on both sides to provide a smooth contact surface with the resilient seat. At the same time, the gate is rounded to prevent the seat from being cut. Different degrees of polishing, antiabrasion treatments and modifications are available to adapt the valves to the customer's requirements.


3. SEAT


Six types of seats are available according to the working application:

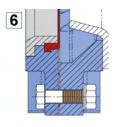


Fig. 3

SEAT 1

Metal / metal seat.

This type of seat does not include any kind of resilient seat and the estimated leakage (considering water as the test fluid) is 1.5% of the pipe flow.

SEAT 2

Standard soft-seated valve.

This type of seat includes a resilient seat which is fixed to the inside of the body via an AISI316 stainless steel retaining ring. Considering that the valve is bidirectional it has two joints.

SEAT 3

Soft-seated valve with reinforced socket

Soft-seated valve with reinforced socket. This type of seat includes a resilient seat which is fixed to the inside of the body via a reinforced retaining ring with two functions (to protect the valve from abrasion and clean the gate when working with solids that can stick to it). Considering that the valve is bidirectional it has two joints and two reinforced sockets.

SEAT 4/5/6

The same as seats 1, 2 and 3 but including a deflector.

The deflector is a cone-shaped ring located at the valve's entrance with two functions (to protect the valve from abrasion and guide the flow to the centre of the valve). Three materials are available for the reinforced socket and the deflector: Steel CA-15, CF8M and Ni-hard.

STEM NUT

EPDM

This is the standard resilient seat fitted on **CMO valves**. It can be used in many applications, however, it is generally used for water and products diluted in water at temperatures no higher than $90^{\circ}C^{*}$. It can also be used with abrasive products and it provides the valve with 100% watertight integrity.

NITRILE

It is used in fluids containing fats or oils at temperatures no higher than 90°C^* . It provides the valve with 100% watertight integrity.

FKM

Suitable for corrosive applications and continuous high temperatures of up to 190°C and peaks of 210°C. It provides the valve with 100% watertight integrity.

SILICONE

Mainly used in the food industry and for pharmaceutical products with temperatures no higher than 200°C. It provides the valve with 100% watertight integrity.

PTFE

Suitable for corrosive applications and pH between 2 and 12. Does not provide the valve with 100% watertight integrity. Estimated leakage: 0.5% of the tube flow.

4. PACKING

CMO Valves's standard packing is composed of three lines with a specially designed EPDM O-ring in the middle which provides watertight integrity between the body and the gate, preventing any type of leakage to the atmosphere. It is located in an easily accessible place and can be replaced without dismantling the valve from the pipeline. Below we indicate various types of packing available according to the application in which the valve is located:

1. GREASED COTTON

(Recommended for hydraulic services)

This packing is composed of braided cotton fibres soaked in grease both inside and out. It is for general use in hydraulic applications in both pumps and valves.

2. DRY COTTON

This packing is composed of cotton fibres. It is for general use in hydraulic applications with solids.

3. COTTON + PTFE

This packing is composed of braided cotton fibres soaked in PTFE both inside and out. It is for general use in hydraulic applications in both pumps and valves.

4. SYNTHETIC + PTFE

This packing is composed of braided synthetic fibres soaked in PTFE both inside and out. It is for general use in hydraulic applications in both pumps and valves and in all types of fluids, especially corrosive ones, including concentrated and oxidising oils. It is also used in liquids with solid particles in suspension.

5. GRAPHITE

This packing is composed of high-purity graphite fibres. A diagonal braiding system is used and it is impregnated with graphite and lubricant which helps to reduce porosity and improve operation. It has a wide range of applications as graphite is resistant to steam, water, oils, solvents, alkali and most acids.

6. CERAMIC FIBRE

This packing is composed of ceramic material fibres. Its main applications are with air or gas at high temperatures and low pressures

	SEATS	S / SEALS		PACKIN	G		
MATERIAL	T° MÁX (ºC)	APLICATIONS	MATERIAL	P(Bar)	Tª. MÁX	рН	
Steel/Steel	>250°C	High temp./Low watertight integ	Greased cotton	10	100°C	6-8	
EPDM (E)	90 *°C	Non-mineral acids and oils	Dry cotton	0,5	100°C	6-8	
Nitrile (N)	90 *°C	Hydrocarbons, oils and greases	Cotton + PTFE	30	120°C	6-8	
FKM (V)	200°C	Hydrocarbons and solvents	Synthetic + PTFE	100	-200+270°C	0-14	
Silicone (S)	200°C	Food Products	Graphite	40	650°C	0-14	
PTFE (T)	250°C	Corrosion resistant	Ceramic Fibre	0,3	1400°C	0-14	

Note: More details and other materials on request

* EPDM and Nitrile: it is possible up to Ta Max: 120°C on request

5. STEM

The stem on the **CMO Valves** valve is made of AISI 304 stainless steel. This characteristic provides high resistance and excellent corrosion-resistant properties. The valve design can be rising stem or non-rising stem. When rising stem is required a stem hood is supplied to protect the stem from contact with dust and dirt, as well as keeping it lubricated.

6. PACKING GLAND

The packing gland allows uniform force and pressure to be applied to the packing to ensure watertight integrity. As standard, valves with cast iron body include GJS500-7 packing glands, whilst valves with stainless steel body have CF8M packing glands.

7. ACTUATORS

All types of actuators can be supplied, with the advantage that thanks to the **CMO Valves** design they are fully interchangeable. This design allows the customer to change the actuators themselves and no extra assembly accessories are required. A design characteristic of **CMO Valves** is that all actuators are interchangeable.

Manual Drives
Handwheel (*)
Chain handwheel (*)
Lever
Geared motor (*)
Others (square stem)
_
Availability of Accessories
Mechanical stoppers
Locking devices
Emergency manual drives
Electrovalves
Positioners
Limit switches
Proximity detectors
Straight floor stand (fig. 4)
Leaning floor stand (fig. 5)

Automatic Drives Electric actuator (*) D/E & S/E pneumatic cylinder Hydraulic cylinder (*) Available in rising and non-rising stem versions.

Stem extensions have also been developed, allowing the drive to be located far away from the valve, to suit all needs. Please ask our engineers beforehand.

ACCESSORIES AND OPTIONS

Different types of accessories are available to adapt the valve to specific working conditions such as:

MIRROR POLISHED GATE

The mirror polished gate is especially recommended in the food industry and, as standard, in applications in which solids can stick to the gate. It is an alternative to ensure the solids slide off and do not stick to the gate.

PTFE LINED GATE

As with the mirror polished gate, it improves the valve's resistance to products that can stick to the gate.

STELLITED GATE

Stellite is added to the gate's lower edge to protect it from abrasion.

SCRAPER IN THE PACKING

Its function is to clean the gate during the opening movement and prevent possible damage to the packing.

AIR INJECTION IN THE PACKING GLAND

By injecting air in the packing, an air chamber is created which improves the watertight integrity.

HEATING JACKET

Recommended in applications in which the fluid can harden and solidify inside the valve's body. An external jacket keeps the body temperature constant, preventing the fluid from solidifying.

DRIVE OR YOKE SUPPORT

Made of EPOXY-coated steel (or stainless steel to order), its robust design gives it great rigidity in order to withstand the most adverse operation conditions.

MECHANICAL LIMIT SWITCHES, INDUCTIVE SWITCHES AND POSITIONERS

Limit switches or inductive switches are installed to indicate precise valve position, as well as positioners to indicate continuous position.

SOLENOID VALVES

For air distribution to pneumatic actuators.

CONNECTION BOXES, WIRING AND PNEUMATIC PIPING

Fully assembled units can be supplied with all the necessary accessories.

MECHANICAL STROKE LIMITING STOP (MECHANICAL STOPPERS)

These allow the stroke to be mechanically adjusted, limiting the valve run.

MECHANICAL LOCKING DEVICE

Allows the valve to be mechanically locked in a fixed position.

EMERGENCY MANUAL ACTUATOR (HAND WHEEL /GEAR BOX)

Allows manual operation of the valve in the event of power or air failure.

FLUSHING HOLES IN BODY

Several holes can be drilled in the body to flush air, steam or other fluids out in order to clean the valve seat before sealing.

TRIANGULAR (V-NOTCH) AND PENTAGONAL DIAPHRAGM WITH INDICATION RULE

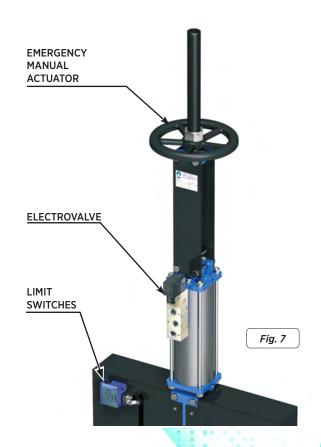
Recommended for applications in which flow regulation is required. Allows flow control according to the valve's opening percentage.

INTERCHANGEABLE ACTUATORS

All actuators are easily interchangeable, except the lever.

RECUBRIMIENTO DE EPOXI

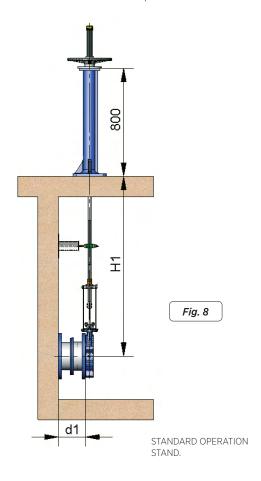
All cast iron and carbon steel bodies and components on **CMO Valves** are EPOXY coated, giving the valves great resistance to corrosion and an excellent finish.


CMO Valves's standard colour is blue, RAL-5015.

GATE SAFETY PROTECTION

In accordance with European Safety Standards ("EC" marking), **CMO Valves** automated valves are equipped with gate guards, to prevent any objects from being accidentally caught in the gate.

BONNET


Provides total seal-tightness to the outside, reducing the packing maintenance required.

TYPES OF EXTENSIONS

When the valve needs to be operated from a distance, the following different types of actuators can be fitted:

COMPONENT LIST

COMPONENT	STANDARD VERSION
Stem	AISI 304
Rod	AISI 304
Support-Guide	Carbon steel with EPOXY coating
Guide	PA6
Stand	GJS500-7 with EPOXY coating

Table 3

1- FLOOR STAND

This extension is done by coupling a spindle to the stem. The desired extension is achieved by defining the length of the spindle. A floor stand is normally installed to support the drive.

The definition variables are as follows:

H1 = Distance from valve centre to base of the stand

d1 = Separation from the wall to the end of the connecting flange

CHARACTERISTICS:

- It can be coupled to any type of drive.
- We recommend a stem guide bracket every 1.5 m
- The standard floor stand is 800 mm high.
- Option to use a position indicator to determine the valve's percentage of opening.
- Leaning stand available to order
- Other floor stand measurements available on request.

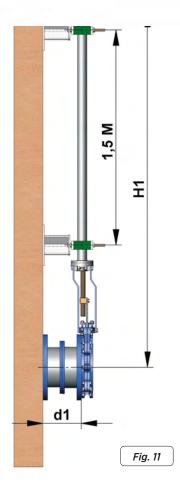
LEANING STAND.

Fig. 10

2.- PIPE

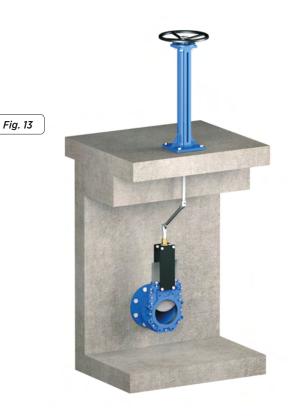
This consists of raising the drive. The pipe will rotate in the same direction as the wheel when the valve is operated. The valve always remains at the same height.

The definition variables are as follows:


H1 = Distance from valve centre to base of the stand

d1 = Separation from the wall to the end of the connecting flange

CHARACTERISTICS:


- Standard drives: handwheel and top square.
- A pipe guide bracket is recommended every 1.5 m.
- The standard materials are: EPOXY-coated carbon steel and stainless steel.

4.- CARDAN JOINT

If the valve and the drive are not in correct alignment, the problem can be resolved by fitting a universal cardan joint.

3.- ELONGATED

SUPPORT PLATES

support plates structure.

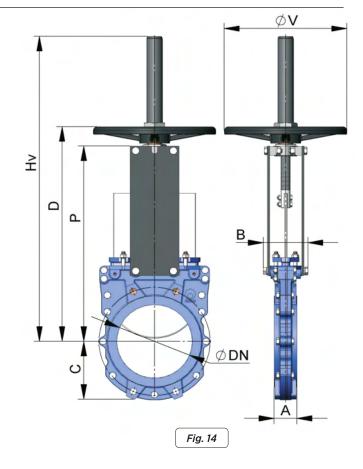
HANDWHEEL WITH RISING STEM

The definition variables are as follows:

B = Max. width of the valve (without drive).

D = Max. height of the valve (without drive).

OPTIONS:


- Locking devices.
- Extensions: stand, pipe, plates.
- DN above those given in the table

ACTUATOR:

- Handwheel
- Stem
- Nut
- Stem protection hood.

AVALAIBLE:

- DN50 to DN600
- From ND600 the actuator is with geared motor.

DN	Δ P (bar)	Α	В	С	Р	Hv	D	øV
50	10	40	92	63	241	409	280	225
65	10	40	92	70	268	436	307	225
80	10	50	92	92	294	469	333	225
100	10	50	92	105	334	502	373	225
125	10	50	102	120	367	585	406	225
150	10	60	102	130	419	644	458	225
200	10	60	119	160	525	815	578	325
250	10	70	119	198	626	1016	679	325
300	6	70	119	234	726	1116	779	380
350	6	96	290	256	797	1336	906	450
400	6	100	290	292	903	1442	1012	450
450	5	106	290	308	989	1628	1098	450
500	4	110	290	340	1101	1738	1210	450
600	4	110	290	400	1307	2046	1416	450

^{*} Other ND on request.

HANDWHEEL WITH NON-RISING STEM

Appropriate when the valve is installed at height.

The definition variables are as follows:

B = Max. width of the valve (without drive).

D = Max. height of the valve (without drive).

OPTIONS:

- Square nut
- Locking devices
- Extensions: elongated plates...
- ND higher than those give in the table

ACTUATOR:

- Handwheel
- Stem
- Guide bearings on the yoke.
- Nut

AVALAIBLE:

ND50 to DN600

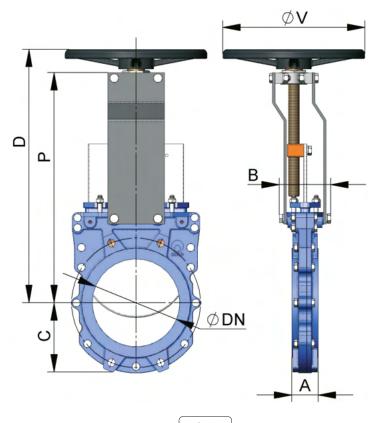


Fig. 15

DN	ΔP (bar)	Α	В	С	P	D	øV
50	10	40	101	63	241	280	225
65	10	40	101	70	268	308	225
80	10	50	101	92	294	333	225
100	10	50	101	105	334	373	225
125	10	50	111	120	367	407	225
150	10	60	111	130	419	458	225
200	10	60	128	160	525	578	325
250	10	70	128	198	626	679	325
300	6	70	128	234	726	779	380
350	6	96	305	256	797	906	450
400	6	100	305	292	903	1012	450
450	5	106	305	308	989	1098	450
500	4	110	305	340	1101	1210	450
600	4	110	305	400	1307	1416	450

^{*} Other ND on request.

CHAINWHEEL

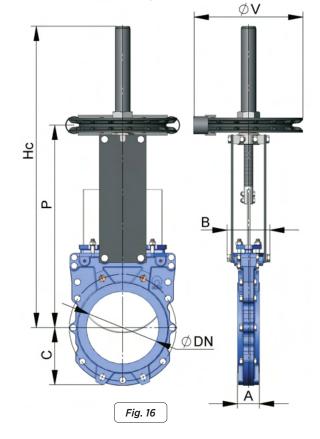
Widely used in raised installations with difficult access, the handwheel is fitted in vertical position.

The definition variables are as follows:

B = Max. width of the valve (without drive).

P = Max. height of the valve (without drive).

OPTIONS:


- Square nut
- Locking devices
- Extensions: elongated plates...
- ND higher than those give in the table

ACTUATOR:

- Handwheel
- Stem
- · Guide bearings on the yoke.
- Nut

AVALAIBLE:

- ND50 to DN600.
- From ND600 the actuator is with gears.

DN	Δ P (bar)	Α	В	С	D	Нс	ØV
50	10	40	92	63	264	409	225
65	10	40	92	70	291	436	225
80	10	50	92	92	317	469	225
100	10	50	92	105	357	502	225
125	10	50	102	120	390	585	225
150	10	60	102	130	442	644	225
200	10	60	119	160	551	815	300
250	10	70	119	198	652	1016	300
300	6	70	119	234	752	1116	300
350	6	96	290	256	879	1336	402
400	6	100	290	292	985	1442	402
450	5	106	290	308	1071	1628	402
500	4	110	290	340	1183	1738	402
600	4	110	290	400	1389	2046	402

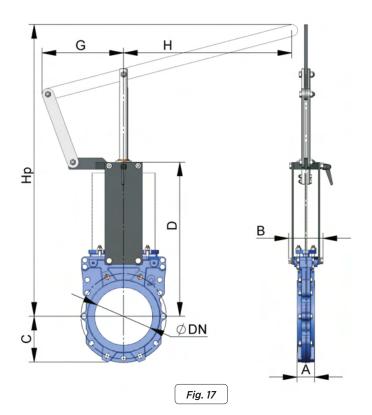
^{*} Other ND on request.

LEVER

It is a fast maneuvering drive.

The definition variables are as follows:

B = Max. width of the valve (without drive).


D = Max. height of the valve (without drive).

ACTUATOR:

- Lever
- Rod
- Guide bearing
- External limiting switches to maintain the position

AVALAIBLE:

ND50 to DN300

DN	ΔP (bar)	Α	В	С	Р	G	Н	Нр
50	10	40	92	63	264	155	325	504
65	10	40	92	70	291	155	325	526
80	10	50	92	92	317	155	325	549
100	10	50	92	105	357	155	325	605
125	10	50	102	120	390	155	425	902
150	10	60	102	130	442	155	425	956
200	10	60	119	160	551	290	620	1027
250	10	70	119	198	652	290	620	1416
300	6	70	119	234	752	290	620	1525

^{*} Other ND on request.

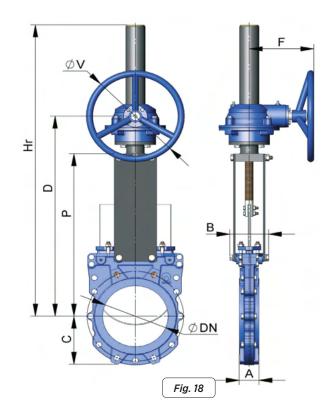
GEAR BOX

The definition variables are as follows:

B = Max. width of the valve (without drive).

D = Max. height of the valve (without drive).

OPTIONS:


- · Chain handwheel.
- Locking devices.
- Extensions: stand, pipe, plates, etc.
- Non-rising stem.

ACTUATOR:

- Stem
- Yoke
- Cone-shaped gear box
- Handwheel
- Standard ratio = 4 to 1.

AVALAIBLE:

ND50 to DN600

DN	ΔP (bar)	Α	В	С	P	D	F	Ø۷	Hr
50	10	40	92	63	241	366	198	300	540
65	10	40	92	70	268	392	198	300	566
80	10	50	92	92	294	418	198	300	592
100	10	50	92	105	334	458	198	300	632
125	10	50	102	120	367	491	198	300	665
150	10	60	102	130	419	543	198	300	717
200	10	60	119	160	525	648	198	300	942
250	10	70	119	198	626	749	198	300	1043
300	6	70	119	234	726	850	198	300	1194
350	6	96	290	256	797	891	218	450	1335
400	6	100	290	292	903	997	218	450	1441
450	5	106	290	308	989	1083	218	450	1677
500	4	110	290	340	1101	1195	218	450	1789
600	4	110	290	400	1307	1401	218	450	2045

^{*} Other ND on request.

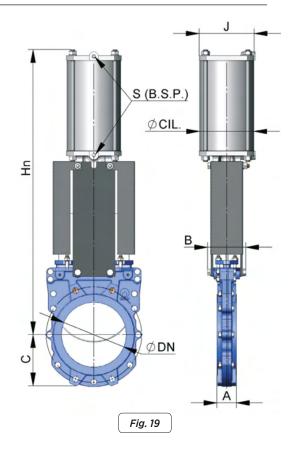
DOUBLE-ACTING PNEUMATIC CYLINDER

The definition variables are as follows:

B = Max. width of the valve (without drive).

The air supply pressure to the pneumatic cylinder is a minimum of 6 bar and a maximum of 10 bar, the air must be dry and lubricated.

10 bar is the maximum admissible air pressure. For air pressures below 6 bar, please check with **CMO Valves**.


For DN50 to DN200 valves, the cylinder's jacket and covers are made of aluminium, the spindle of AlSI304, the piston of rubber-coated steel and the O-ring seals are made of nitrile.

For valves larger than DN200 the covers are made of nodular cast iron or carbon steel.

To order, we can also supply the actuator made entirely of stainless steel, especially for installation in corrosive atmospheres.

AVALAIBLE:

ND50 to DN600.

DN	∆P (bar)	Α	В	С	ø CIL	ø VAST	J	S (B.S.P)	Hn
50	10	40	92	63	80	20	96	1/4"	415
65	10	40	92	70	80	20	96	1/4"	455
80	10	50	92	92	80	20	96	1/4"	498
100	10	50	92	105	100	20	115	1/4"	565
125	10	50	102	120	125	25	138	1/4"	636
150	10	60	102	130	125	25	138	1/4"	717
200	10	60	119	160	160	30	175	1/4"	874
250	10	70	119	198	200	30	218	3/8"	1036
300	6	70	119	234	200	30	218	3/8"	1182
350	6	96	290	256	250	40	270	3/8"	1380
400	6	100	290	292	250	40	270	3/8"	1530
450	5	106	290	308	300	45	382	1/2"	1677
500	4	110	290	340	300	45	382	1/2"	1839
600	4	110	290	400	300	45	382	1/2"	2146

^{*} Other ND on request

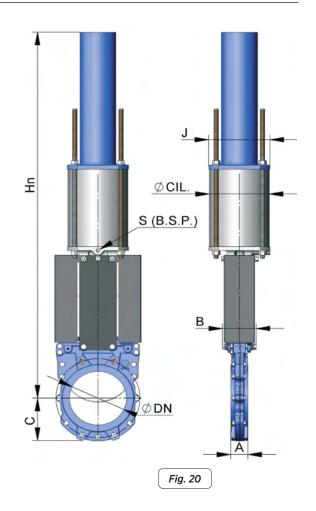
SINGLE-ACTING PNEUMATIC CYLINDER

The definition variables are as follows:

B = Max. width of the valve (without drive).

The air supply pressure to the pneumatic cylinder is a minimum of 6 bar and a maximum of 10 bar, the air must be dry and lubricated.

10 bar is the maximum admissible air pressure. For air pressures below 6 bar please consult manufacturer.


Available for opening or closing in case of air supply failure (spring opening or closing).

The jacket is made of aluminium, the covers of nodular cast iron or carbon steel, the rod of AISI304, the piston of rubber-coated steel, the O-ring seals of nitrile and the spring is made of steel.

The actuator design is spring activated for valves with diameters up to **DN300**. For larger diameters the actuator contains a double-acting cylinder and an air tank which stores the volume of air necessary to perform the last movement in the event of a air supply failure.

AVALAIBLE:

Standard fron ND50 to DN300.

DN	∆P (bar)	Α	В	С	ø CIL	ø VAST	J	S (B.S.P)	Hn
50	10	40	92	63	125	25	138	1/4"	781
65	10	40	92	70	125	25	138	1/4"	806
80	10	50	92	92	125	25	138	1/4"	833
100	10	50	92	105	125	25	138	1/4"	873
125	10	50	102	120	160	30	175	1/4"	909
150	10	60	102	130	160	30	175	1/4"	960
200	10	60	119	160	200	30	218	3/8"	1355
250	10	70	119	198	250	40	270	3/8"	1844
300	6	70	119	234	250	40	270	3/8"	2005

^{*} Other ND on request

ELECTRIC ACTUATOR

This actuator is automatic and includes the following parts:

- Electric motor.
- Stem.
- Yoke.

THE ELECTRIC MOTOR INCLUDE:

- Emergency manual handwheel
- Limit switches
- Torque switches

OPTIONS:

- Different types and brands
- Non-rising stem
- ISO 5210 / DIN 3338 flanges

AVALAIBLE:

- Standard fron DN50 to DN600.
- From DN500 the motor is assisted with a gear box.

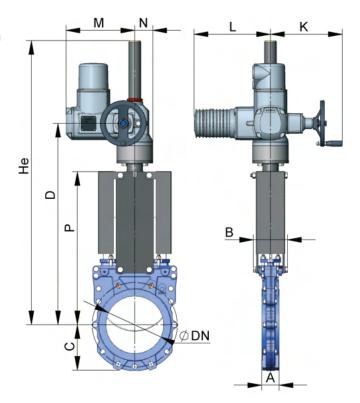


Fig. 21

DN	ΔP (bar)	Α	В	С	D	K	L	M	N	Р	He
50	10	40	92	63	400	249	265	238	62	241	595
65	10	40	92	70	426	249	265	238	62	268	622
80	10	50	92	92	452	249	265	238	62	294	647
100	10	50	92	105	492	249	265	238	62	334	687
125	10	50	102	120	525	249	265	238	62	367	720
150	10	60	102	130	577	249	265	238	62	419	772
200	10	60	119	160	685	249	265	238	62	525	990
250	10	70	119	198	785	249	265	238	62	626	1090
300	6	70	119	234	885	249	265	238	62	726	1190
350	6	96	290	256	940	254	283	248	65	797	1305
400	6	100	290	292	1045	254	283	248	65	903	1460
450	5	106	290	308	1175	336	389	286	91	989	1755
500	4	110	290	340	1290	336	389	286	91	1101	1870
600	4	110	290	400	1495	336	389	286	91	1307	2045

^{*} Other ND on request

HYDRAULIC ACTUATOR

The definition variables are as follows:

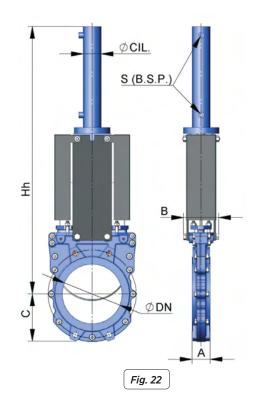
B = Max. width of the valve (without drive).

THE HYDRAULIC ACTUATOR INCLUDES:

- Hydraulic cylinder
- Yoke

SUPPLY PRESSURE STANDARD:

150 bar.

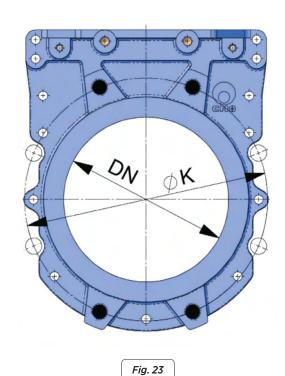

OPTIONS:

Different types and brands available according to customer's requirements.

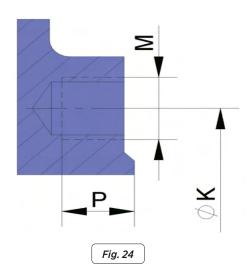
AVALAIBLE:

ND50 to DN600.

DN	ΔP (bar)	Α	В	С	Hh	ø CIL	ø VAST	S (B.S.P)	OIL CAP. (dm)
50	10	40	92	63	460	25	18	3/8"	0.03
65	10	40	92	70	500	25	18	3/8"	0.03
80	10	50	92	92	560	25	18	3/8"	0.04
100	10	50	92	105	620	32	22	3/8"	0.09
125	10	50	102	120	683	32	22	3/8"	0.11
150	10	60	102	130	755	40	28	3/8"	0.20
200	10	60	119	160	926	50	28	3/8"	0.42
250	10	70	119	198	1077	50	28	3/8"	0.52
300	6	70	119	234	1245	50	28	3/8"	0.62
350	6	96	290	256	1376	50	28	3/8"	0.73
400	6	100	290	292	1535	63	36	3/8"	1.31
450	5	106	290	308	1710	63	36	3/8"	1.47
500	4	110	290	340	1870	63	36	3/8"	1.62
600	4	110	290	400	2175	80	45	3/8"	3.12



FLANGE DIMENSIONS


EN 1092-2 PN10

DN	•	0	M (Métrica)	Р	øK
50	4	-	M 16	8	125
65	4	-	M 16	8	145
80	4	4	M 16	9	160
100	4	4	M 16	9	180
125	4	4	M 16	9	210
150	4	4	M 20	10	240
200	4	4	M 20	10	295
250	6	6	M 20	12	350
300	6	6	M 20	12	400
350	12	4	M 20	21	460
400	12	4	M 24	21	515
450	16	4	M 24	22	565
500	16	4	M 24	22	620
600	16	4	M 27	22	725

Table 13

- TAPPED HOLES
- THROUGH HOLE

ANSI B16, Class 150

DN		0	M (UNC)	P	øK
2"	4	-	5/8"	8	120,6
2 ½"	4	-	5/8"	8	139,7
3"	4	-	5/8"	9	152,4
4"	4	4	5/8"	9	190,5
5"	4	4	3/4"	9	215,9
6"	4	4	3/4"	10	241,3
8"	4	4	3/4"	10	298,4
10"	6	6	7/8"	12	361,9
12"	6	6	7/8"	12	431,8
14"	8	4	1"	21	476,2
16"	12	4	1"	21	539,7
18"	12	4	11/8"	22	577,8
20"	16	4	11/8"	22	635
24"	16	4	11/4"	22	749,3

ARNETT ENGINEERED SOLUTIONS

61 INNOVATION DRIVE, BAMBERG, SC 29003

(844) 785-7585 | SALES@ARNETT.COM

WWW.ARNETT.COM